Building Science Institute, Ltd. Co. Procedure G-2023 Data Visualization & Analysis

Data Visualization

Process

- 1. Value Map
 - a. Value System: aggregation of value chains that deliver value to customer & enable competitive advantage
 - b. Value Chain: sequence of activities that provide specific service/product delivery to customer
- 2. SIPOC
 - a. Suppliers
 - i. Who supplies the inputs?
 - ii. Written down AFTER "Inputs" are written down
 - b. Inputs
 - i. Information
 - ii. Equipment
 - iii. Materials
 - iv. Supplies
 - v. What inputs are needed to successfully complete the "Process step"?
 - vi. Written down AFTER "Process steps" are defined
 - c. Process steps
 - i. Process is broken down into 5-7 high level activities (steps) in sequence
 - ii. SIPOC analysis starts with "Process steps"
 - d. Outputs
 - i. What has been transformed in this "Process step"?
 - ii. Written down AFTER "Process steps", "Inputs", and "Suppliers" are defined
 - e. Customers
 - i. Who gets the output from this "Process step"?
 - ii. Who needs to get them?
 - iii. Written down AFTER "Outputs" have been described
- 3. Process Map
 - a. Activities
 - i. Process steps from SIPOC
 - b. Roles
 - i. Suppliers
 - ii. Customers
 - iii. Stakeholders
 - iv. Practitioner
 - c. Information
 - i. Process inputs
 - ii. Process outputs
 - d. Technology
 - i. All tech needed to complete process step

Graphical

Attributes

- 1. Check sheets
 - a. Measure counts (defects)
 - b. Identify defect types
 - c. Requires understanding of Process Map to know what to measure & types of defects
- 2. Pareto charts
 - a. Measure factors, defects, counts
 - b. Summarizes defect data from Check Sheet
 - c. Identifies critical few vs trivial many defect types

Variables

- 1. Histogram
 - a. Understand distribution
 - i. Central tendency

- ii. Variation
- iii. Outliers
- b. 2 or 3 humps means additional processes mixed in
- c. Leverages knowledge of Process Map variables & metrics to collect data on

Data Analysis

Root Cause Analysis

- 1. Cause and Effect diagram
 - a. Understand root cause & contributing factors
 - b. Requires knowledge from Process Map, Check Sheet, Pareto Chart, Histogram to help identify root causes
 - "Bones" for Cause & Effect Diagram c.
 - i. Generic
 - 1. Measurement
 - 2. Environment
 - 3. Materials
 - 4. Methods
 - 5. Machines
 - 6. People (always last)
 - ii. Manufacturing
 - 1. Machine
 - 2. Method
 - 3. Material
 - 4. Measurement

 - Mission
 Management
 Maintenance
 Manpower (always last)
 - iii. Marketing
 - Product
 Price
 Place

 - 4. Promotion
 - 5. Process
 - 6. Proof
 - 7. Performance
 - 8. People (always last)
 - iv. Service
 - 1. Surroundings
 - 2. Suppliers
 - 3. Systems
 - 4. Safety
 - 5. Skill (always last)
 - v. Data Quality
 - 1. Organizational changes
 - 2. Manual data entry

 - Data integration
 Loss of expertise
 Data corruption by hackers
 Aging of data / data decay

 - Inadequate validation in the data capture process
 Inefficient business process management and design
 Lack of common data standards, data dictionary, and metadata
 - 10. Data purging
 - 11. Data migration
 - 12. System upgrades
 - 13. Data cleansing programs
 - 14. Multiple uses of data and lack of shared understanding of data
 - 15. Business data ownership and governance issues

- 1. Run charts
 - a. See trends
 - b. Identify improvements
 - c. Investigate from Measurements & Analysis
 - i. Factors
 - ii. Defects
 - iii. Root causes
- 2. Control charts
 - a. See patterns
 - b. Identify out of control conditions (assignable causes)
 - c. Ensure stable processes
 - d. Identify when process improves
 - e. Leverages process knowledge
 - i. Factors/variables
 - ii. Metrics
 - iii. Defects
 - iv. Root causes

Statistical

1. Simple Ratio

b.

- a. 1 (number of undesirable outcomes / total outcomes)
 - i. Measures ratio of positive outcomes to total outcomes
 - ii. Useful to show continuous improvements over time
 - 1 (number of desirable outcomes / total outcomes)
 - i. Measures ratio of negative outcomes to total outcomes
 - ii. Useful to show reduction in negative outcomes over time
- c. Quality dimensions measured with simple ratio
 - i. Free of Error
 - 1. 1 (Number of units without error / total units) OR
 - 2. 1 (Number of units with errors / total units)
 - ii. Completeness
 - 1. Schema completeness: degree to which entities & attributes are not missing from schema
 - 2. Column completeness: function of missing values in a column
 - 3. Population completeness: degree to which expected population is not missing from column
 - 4. 1 (number of incomplete items / total items)
 - iii. Consistency
 - 1. Consistency of redundant values across tables
 - 2. 1 (violations of specific consistency type / total number of consistency checks)
 - iv. Concise Representation
 - v. Relevancy
 - vi. Ease of Manipulation
- 2. Min or Max Operation
 - a. Handles quality dimensions that require aggregation of multiple data quality variables
 - b. Compute the minimum or maximum value from the normalized values of individual data quality variables
 - c. Min Operator
 - i. Conservative
 - ii. Assigns to the dimension an aggregate value no higher than the value of its weakest data quality variable which has been evaluated & normalized to between 0 and 1
 - iii. Quality dimensions measured with Min Operator:
 - 1. Believability
 - a. Reflects assessment of
 - i. credibility of data source
 - ii. comparison to common standard
 - iii. previous experience
 - b. Each variable rated on scale of 0 to 1
 - c. Overall Believability assigned minimum value of the 3 OR
 - i. Overall Believability computed as weighted average of individual variables

- 2. Appropriate Amount of Data
 - a. Minimum of 2 Simple Ratios
 - i. number of data units provided / number of data units needed
 - ii. number of data units needed / number of data units provided
- d. Max Operator
 - i. Liberal
 - ii. Individual variables may be measured by Simple Ratio
 - iii. Quality dimensions measured with Max Operator:
 - 1. Timeliness
 - a. Reflects how up-to-date the data is with respect to the task it's used for
 - b. Maximum value of 2 terms:
 - i. 0 or
 - ii. 1 (currency / volatility)
 - 1. currency = age + delivery time input time
 - a. age = age of the data when first received by system
 - b. delivery time = time when data is
 - delivered to user
 - c. input time = time when data received by system
 - 2. volatility = length of time data remains valid
 - 2. Accessibility
 - a. Reflects ease of data attainability
 - b. Maximum value of 2 terms:
 - i. 0 or
 - ii. 1 (time interval from request by user to delivery to user / time interval from request by user to point at which data is no longer useful)

- 3. Weighted Average
 - a. Appropriate if organization has good understanding of importance of each variable to overall evaluation of the quality dimension.
 - b. Each weighting factor must be between 0 and 1
 - c. Sum of weighting factors must equal 1

Approved by the Building Science Institute, Ltd. Co. Quality Council on May 22, 2023. Approve: Kevin Burk, Erik Straite, Brian Christensen, Amber Wood Reject: None Net Voting: Wor Davis, Brott Dillon (Chair)

Not Voting: Wes Davis, Brett Dillon (Chair)

Copyright $\ensuremath{\mathbb{C}}$ 2023 by Building Science Institute, Ltd. Co.

This work is copyright protected and no portion may be reproduced, copied, duplicated, stored in a retrieval system, or transmitted by any means (electronic, mechanical, photocopying, recording or any other means) without the express written permission of the copyright holder.